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Executive Summary

This document describes the deep learning techniques used in the dialogue components of the e- VITA
prototype. It briefly states the purpose of the methodology of deep learning and language models and
presents a short overview of the technology used in the subtasks of the NLP pipeline. Since the project
adopted the Rasa Open-Source Conversational Al system, much of the toolbox is already provided
within the platform itself. Here we describe the updated version of the NLU system, which we have
extended with advanced intent classifiers and semantic search. We also illustrate the latest addition to
the system, that is the exploitation of the recent advancements in dialogue generation introduced by
large language models.
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1 Introduction

The Deep Learning Toolbox comprises a set of tools and techniques that can be used in the annotation,
segmentation, analysis, and processing of language data. In the e-VITA project, the tools are related to
the Rasa open-source conversational Al platform, which offers a wide variety of state-of-the-art tools
to experiment with different pipelines and parameters.

In the previous version of this document, we explored the use of language models — specifically the T5
Text-to-Text Transfer Transformer [1] — for various natural language processing (NLP) tasks such as
translation, question answering, and classification. We also delved into the concept of multitasking
within a single model and the use of the RASA platform for dialogue systems. Our use of Named Entity
Recognition, Entity Linking, and Relation Linking, which are crucial for understanding the finer points of
a phrase and connecting text data to structured information, was also discussed.

In this revised version, we shift our focus to the Natural Language Understanding (NLU) component,
which is integral to the processing and interpretation of human language. We aim to provide a
comprehensive understanding of the NLU component and its critical role in enhancing the capabilities
of the e-VITA dialogue system.

A chatbot, or a conversational agent, should excel in two critical functions: first, it needs to comprehend
what the user communicates, and second, it needs to respond suitably. The initial process involves
Natural Language Understanding (NLU), while the latter involves Response Generation. Here we
provide an overview of our research and implementations, focussing on enhancing the NLU capabilities
of the system, and justifying the enhancements we have made to the RASA NLU component. We also
share experimental outcomes, in which our NLU system's performance is compared with several other
top-performing NLUs.

Notably, our tools now incorporate OpenAl modules into the dialogue manager. We have leveraged
OpenAl language models to respond to queries that do not align with any predefined utterances within
the dialogue system. These models have been successfully employed particularly where the
conventional dialogue manager falls short, due to an insufficiency in the structured narratives. We
utilize custom-selected content as a resource, enabling the dialogue manager to address queries that
only pertain to the source material. In doing so, we assist the dialogue manager in adopting a form of
guided text generation.
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2 RASA as a Toolbox for Dialogue System

The default NLU pipeline in Rasa, which was detailed in the previous version of this Deliverable, is
depicted in Figure 1. It consists of four basic components: 1) Tokenizers, 2) Featurizers, 3) Intent
Classifiers, and 4) Entity Extractors.

Entity Extractor —— Entities

\ Intent Classifier —— Intents

Text —— Tokens —» Features

Figure 1 — Basic NLU pipeline for RASA

That can be considered as the “base” RASA system. In our project we need to handle a high number of
intents across several domains and, in order to classify the intents well, we have built custom
components which are directly used by the dialogue manager. Our new pipeline of the RASA system is
depicted in Figure 2.
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Figure 2 — Our RASA NLU Pipeline

2.1 Language Handler

Our chatbot is engineered to accommodate multiple languages, enabling users to interact with it in
their language of choice. Our dialogue system incorporates the Rasa NLU and Core components,
alongside the Deepl! language handler for machine translation. Furthermore, we performed training
and evaluation procedures for the system, which include the use of custom datasets in various
languages. Our findings validate the efficacy of our approach in crafting a multilingual chatbot capable

T http://www.deepl.com/
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of precisely understanding and responding to user inputs across multiple languages. Figure 3 depicts
how our system is currently using the translation layer in the language handler.

Language Handler ’ ki Language Handler
-
Spelling
DeepL|| | Correctiion RASA Deepl
& environment
Grammer
Fixer
Source Language English language
- English Language

-+

Source Language
Actor

Figure 3 — Our RASA Language Handler component

2.2 Tokenizers

Tokenizers take the text input and segment it into suitable chunks. In natural dialogue processing the
suitable chunks are usually words, and the output is a list of words. The Tokenizer also provides separate
tokens for punctuation marks. The default tokenizer for English is the WhiteSpaceTokenizer? but for
languages other than English it is possible to use other tokenizers.

The advantages of using a white space tokenizer are manifold, including high-speed processing and
efficiency, making it an ideal choice for real-time chat applications. Additionally, its ability to be
language-independent enables it to be employed effectively across an array of languages.

2.3 Featurizer

In the latest version of our pipeline, we make use of the ConveRT featurizer [2], a pretrained feature
extraction model created by the RASA team. This model is uniquely crafted to draw out relevant
features from conversational text and translate them into dense vector formats, which are then
leveraged by Rasa's machine learning algorithms. We have selected this featurizer because of its
capability to increase the precision of NLU by offering a detailed portrayal of the conversational context.
The ConveRT featurizer implements a transformer-based structure to process the input text and
generate dense embeddings, which are subsequently used in the training of the NLU model. Moreover,
the ConveRT featurizer excels in situations with few training samples per intent, thus further increasing
its suitability for our application.

2.4 Intent Classifiers
2.4.1 DIET Classifier

The crucial part of dialogue modelling is to correctly classify the user’s intent. For intent classification,
Rasa provides its own DIET model (Dual Intent and Entity Transformer) which handles both intent
classification and entity extraction. This was the classifier we used in the previous version of the system.

2 https://rasa.com/docs/rasa/components/#whitespacetokenizer/
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2.4.2 SetFit Classifier

Along with the DIET classifier, we have now adopted the SetFit classifier and FAISS Semantic search with
majority voting. As a crucial element, the SetFit Classifier is integrated into our NLU pipeline. It adds
value to the RASA NLU framework by facilitating rule-based detection of specific phrases or patterns
from the user input. This feature is particularly beneficial in situations where the DIET classifier might
find it challenging to accurately pinpoint and classify the user utterance.

The significance of the SetFit classifier becomes evident when dealing with unigue situations for which
the DIET classifier hasn't been specifically trained. For example, if a user asks a specific question that
falls outside the training data scope of the DIET classifier, the SetFit classifier is still capable of identifying
the question and providing a suitable response. The SetFit classifier is configured and utilized in a
straightforward manner, enabling developers to quickly incorporate new rules for pattern recognition
in user input without the need for extensive training data or deep machine learning expertise.

Moreover, by incorporating the SetFit classifier into the RASA pipeline in conjunction with the DIET
classifier, the overall precision of the chatbot is enhanced. This combination harnesses the strengths of
both classifiers, leading to more accurate and dependable responses to user input. For each intent, we
acquire the sample utterance and create a dataframe to feed to the SetFit classifier. The algorithm in
Figure 4 illustrates how we have incorporated the SetFit classifier into RASA as a custom component.

Algorithm 1 SetFitClassifier

Require:
training.data: Trainingbata
Ensure:
resources: Resource
1l: function traim {training.data)
2: labels + get labels from training.data
3: texrts + get texts from training.data
4: intent.df train + create dataframe from texts and
labels
5: train.ds + create dataset from intent df_train
b: model + load pretrained SetFit model
7: trainer < initialize SetFitTrainer with moedel,
train_.ds, and other confiquration parameters
8: trainer.train(max.length=max.length)
9: persist trained model

return resources
function PERSIST
model_dir + get model directory from resources
path + join (meodel.dir and I'mrn'i'ct!'n.':lnur"}
save pretrained SetPit model to path
function rroOC (messages)
for cach message in messages do
texl + get Lext from message
label + setfit.pretrained(([text])
con fidence 4+ max(
setfit_pretrained.predict_proba([fext]))

WO SWNHO

rasa-intent + create intent obiject with label and
con fidence
set rasa.antent in message as output intent
return messages
function noan(config, model_.storage, resource,
execution.contexk, ...)

BNORNN N R e e
s WhE o

component + create instance of SetFitClassifier
with config, model_storage, and
resource
model_dir + get model directory from resources
path + join model.dir and ’'setfit’
component.setLfit_pretrained + load pretrained
SetFit model from path

[N TN 18 ]
~Jon

return component

Figure 4 — Integration of the SetFit classifier

10
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2.4.3 FAISS sematic search

For cases in which the SetFit classifier's confidence in classifying an intent is not sufficient, we have the
FAISS® semantic search. FAISS, or Facebook Al Similarity Search, is an open-source platform developed
by Facebook Al Research, intended to simplify the search and clustering of vectors with high
dimensions. This library facilitates FAISS semantic search, allowing users to seek out vectors similar in
meaning to a specified query rather than depending solely on precise value correlations. By harnessing
deep learning methods, including neural networks, FAISS achieves majority voting and is especially
adept at managing vast datasets comprising millions or billions of vectors. This is made possible by
leveraging index structures and endorsing approximate nearest neighbour searches, ensuring efficient
and successful similarity retrieval. By using FAISS on the training data, we were able to generate indexed
data. For this purpose, we have developed a custom component within the RASA framework. The
indexed data is then employed for contrasting against incoming user expressions. It presents us with
the K nearest neighbour intents according to similarity between the user expression and the existing
labelled instances in the training dataset. A majority voting is then conducted to decide on the final
intent.

The algorithms in Figure 5 illustrate this procedure. The algorithm introduces the Semantic Intent
Classifier, which is intended for natural language understanding (NLU) tasks. It uses a DenseFeaturizer
component and the FAISS index to perform efficient nearest neighbour searches.

Algorithm 2 Do Majority Vote
procedure DoMAJORITY.VOTE (intents, scores)
intents + array(intents)
scores < array(scores)

uniqueantents, intent.counts 4 unique(intents,
return_counts=True)

counts_zero < intent_counts[0]
filtered_intent_idxz + [0]
for i =1 to len(intent_counts) — 1 do

if intent_counts[i] < counts_zero then

break
append 7 to filtered.intent_.idx

Woo-JdJoUl Wk

[
o)

N =
WOW-dnU W

combined_scores < []
for i in filtered.inteni_idx do
filtered_intent < unique_intents|i
filtered_score <« mean(scores[intents =
filtered.intent])
append [iltered_score to combined_scores
confomax.ide < argmaz(combined_scores)
intent + unique_intents[conf_max_idz)
score +— combined_scores[conf.mazx_idz]
return intent, score

3 https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

11
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Algorithm 3 SemanticIntentClassifier

Require:

training data: TrainingData
Ensure:

resource: Resource

1: function TRAIN(training_ data)

2: hf_dataset + prepare_index (training-data)

3: persist ()

4: return resource

5: function PERSIST

[ model_dir + get model directory from resource
7: path +— (join model_dir and 'hf dataset_index.hf’)
8: save hf_dataset to dizk at path

9: function PREPARE_INDEX (training_data)

10: labels + get intent labels from training.data
11: tramning eramples +— filter out examples without
text features from frainingdata
12: X 4+ dense features of training examples
13: data_dict — {tert'intent’ : [|, text’embeddings’ : [|}
14: fer ¢+ in range(len{labels)) do
15: append labels[i] to data_dict['intent’)
16: X norm + X|[1] normalized by its norm
17: append X_norm to da!.a._.d'mt[rcmbcddangs’]
18: data_frame +— create dataframe from data_dict
19: hf_dataset + create dataset from datoe_frame
20: return hf dataset
21: functien PROCESS (messages)
221 for each message in messages do
23: currentantent + get current intent from messzage
24: if currcnl_snf.cﬂt[rna.mc'] is "mlu_fallback™ than
25: if hf dataset exizts & message not empty then
26: meszage_features + dense features of
measage
27: meszage_features £+ normalize
message_features by
its norm
28: acores, samples + find K nearest examples
in hf dataset to message_features
29: if K =1 then
30: tntent, score 4— intent and score of the
single nearest example
31: else
32 intent, acore +— do majority wote among
intents and scores
33: rasasntent +— {text['name’]: intent,
text [ confidence’]: score}
34 if rosa.antent[ con fidence'] > threshold then
35: set rasa_intent asz output intent in
message
36: return messages
37 : function Loao config, meodel_storage, resocurce,
execution_context, ...}
38: component +— create instance of

SemanticIntentClassifier with config,
model_storage, and resource
model dir 4+ get model directory from resource
path < join model_ dir and *hf dataset_index.hf’
component hf_ dataset + lcad dataset from path
add FAISS index to component.hf_dataset for column
"embeddings”
return component

W s
[V o TR TV

Figure 5 — Majority voting scheme used by FAISS, and its integration

The algorithm includes several essential functions. The train function accepts training data and forms
anindexed high-feature (HF) dataset. This indexed dataset is then conserved for future use. The process
function processes incoming messages and conducts intent classification based on the trained model.
It fetches the text message, extracts dense features, and uses the FAISS index to locate the nearest
instances. The algorithm utilizes a majority vote approach to determine the final intent and confidence
score. If the confidence score exceeds a certain threshold, the intent is allocated to the message.

The algorithm additionally incorporates functions for maintaining and loading the trained model. The
persist function commits the high-feature (HF) dataset index to disk storage, whereas the load function
retrieves the model and initializes the FAISS index.

12
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In summary, the Semantic Intent Classifier algorithm offers an effective and precise methodology for
intent classification in NLU tasks. It capitalizes on dense featurization techniques and employs FAISS
indexing to facilitate quick nearest neighbour search for intent correlation.

2.5 NLU Pipeline

We have significantly overhauled the pipeline of the previous prototype, to accommodate new
components such as FAISS and majority voting. Alongside these alterations, we undertook a
comprehensive system upgrade, transitioning our dialogue manager from RASA 2.X to 3.X. This
substantial modification required us to adjust our system in accordance with the latest advancements
in RASA.

In the DIET classifier we are using masked language modelling (MLM)*in order to better classify the
intents. The most important components newly integrated include the ConveRT featurizer and the
semantic intent classifier by FAISS. We've also updated the majority voting criteria, which is a
hyperparameter. At present, we are using nearest neighbour for majority voting with K setto 5, and a
confidence threshold of 0.4 for semantic Intent classification. The SetFit classifier is still under the
evaluation phase. We plan to integrate them after complete testing in the evaluation. One new
component that we have optionally added is a sentiment analyser which uses a Hugging Face library by

4 https://huggingface.co/docs/transformers/main/tasks/masked_language_modeling

13
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Jochen Hartmann named "Emotion English DistilRoBERTa-base. > This has been integrated
experimentally to detect emotion from input utterances and can be used in the real dialogues.

The policy has also been updated due to the recent development of RASA technology. Many of the
items are now simplified in the RASA configuration.

policies:
- name: MemoizationPolicy
- name: TEDPolicy
max_history: 10
epochs: 100
- name: RulePolicy

5 https://huggingface.co/j-hartmann/emotion-english-distilroberta-base

14
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3 Question Answering over Wikipedia
3.1 Prototype 1

In the Version 1 of this Deliverable, we already described our employment of Haystack,® an open-source
framework for building intelligent search systems over large document collections. In summary, we
built an extractive question answering (QA) system using Haystack, where the goal is to return a text
phrase from a passage within one or more Wikipedia articles in response to a natural language question.

The data used for the system is obtained from Wikipedia dumps, converted to a lightweight JSON
format with just the article titles and plain text. The indexing process involves preprocessing each
Wikipedia article. This includes cleansing and normalization tasks such as removing white spaces and
splitting articles into smaller pieces to optimize retrieval. During the indexing phase, the system
computes embeddings for each text using one of the language models provided by Haystack. These
embeddings are stored in a vector database called Milvus, while the corresponding documents are
stored in SQLite.

For search functionality, the system utilizes a pipeline. In this case, an extractive QA mechanism is used,
which involves searching through a large collection of documents to find a span of text that answers a
guestion. The pipeline combines a Retriever and a Reader component. The Retriever searches the
database and retrieves the most relevant documents, while the Reader selects a text span from those
documents as the answer to the query.

The output of the pipeline is a Python dictionary that contains a list of Answer objects stored under the
"answers" key. These Answer objects provide additional information, such as the context from which
the answer was extracted and the model's confidence in the accuracy of the answer.

The main components and core concepts of the general Haystack setup are depicted in Figure 6.

; ” >
O T T, T
I LA I I

A 7 I A
o /s -~ /s - s
L s ’
AN R
i LIS 7 A /
e s /

4 A o AP 7

o

Figure 6 — Haystack architecture reference

5 https://github.com/deepset-ai/haystack
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3.2 Prototype 2

3.2.1 Modification to the module

In the prototype 2, a complete retraining has been performed with the updated Wikipedia corpus.
Previously, in the prototype 1, the system providing answers from the Haystack APl took full questions
such as “Ask wiki about <who is the president of USA>”, where the text within “<..>” represents the
guestion as a query. However, the system failed to answer simple questions, e.g., “ask wiki about
football”. Thus, we have updated our system to use media wiki’ APl endpoint on such queries.
Additionally, previously no context was provided by the system (e.g. from which source the questions
were answered): now the system is updated to provide the context for the answer as well.

3.2.2 Summary of the Deployment Components
The following components and language models are still being used, unmodified from the previous
version:

Haystack framework:
v1.1.0
Language Models:
facebook/dpr-question_encoder-single-ng-base
facebook/dpr-ctx_encoder-single-ng-base
deepset/roberta-base-squad2
Document store:
Milvus v1.1.1 for storage and retrieval of the passage embedding vectors
SQLite for storage of the passages
PreProcessor:
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=True,
split_by="word",
split_length=100,
split_respect_sentence_boundary=True,
split_overlap=0,
Retriever:
DensePassageRetriever
query_embedding_model="facebook/dpr-question_encoder-single-ng-base'
passage_embedding_model="facebook/dpr-ctx_encoder-single-ng-base"

1

Reader:
FARMReader
model="deepset/roberta-base-squad2"
use_gpu=True

7 https://www.mediawiki.org/wiki/MediaWiki

16
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4 Dialogues supported by GPT-3

The e-VITA project could not ignore the recent and fast-moving advancements in the state of the art in
conversational Al, driven by Large Language Models (LLMs). For this, we added the use of the OpenAl
API, combined with several documents generated by the Content Group. These documents form the
context in which the APl-accessed service frames its responses, eliminating the risk of so called
“hallucinations”, that is the production by the system of responses which are sometimes out of scope
or untrue. This is due to the extremely large and unrestricted data set on which the language model
has been trained.

The use of the OpenAl APl is illustrated in Figure 7.

System docs
(guidelines,

Al mode

information)

OpenAl
Restricted to system
documents

User requests to

User requests to

start end

Coaching/stories

Intent clear Story exhausted

Follow relevant story OpenAl on system docs

User utterance §

System docs
(guidelines,

Fallback
OpenAl — restricted to

system documents information)

Figure 7 — Diagram of OpenAl use in the e-VITA dialogue system

In the Al modality, the OpenAl APl is used to provide a human-like experience in casual dialogues about
the domains covered by the system, without following a scripted dialogue.

In the coaching modality, the OpenAl APl is only invoked when the user’s utterance is not clear in its
intent or the user follows up on a dialogue which has reached its conclusion in our main system. In this
modality, the OpenAl APl will again only respond on the basis of the documentation we provide,
ensuring that the answers are in scope and accurate.

We are using langchain® and the FAISS vector store to encode the text from the documents providing
the context. This is performed by the function actionDocumentStore, with which we also encode the
history of the user dialogue with the system, see Figure 8. First we process all the documents in a

8 https://langchain.com/

17
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specific folder, extract information from them and create chunks of information (this is done to reduce
the token size, as there is a limit for tokens for QA tasks), see

class ActionDocumentStore(Action):
def name(self) -> Text:
return "action_document_store”
def n(

self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any],
) -> List[Dict[Text, Any]]:
language_name = tracker.get_slot("language”)
if (Globals.openAl_fallback == False) & (

Globals.bert_fallback == False

utter = "I couldn't understand your query, would you please rephrase it2"
else:
if Globals.openAI_fallback:
chat_history = ""

for event in tracker.events

if event.get("event”) == “bot":

chat_history += f"ChatGPT: {event.get('text')}\n"
elif event.get("event") == "user”

chat_history += f"User: {event.get('text')}\n"

query = tracker.latest_message["text"]
utter = provide_fallback_dialogue(

query, chat_history, llm="openAI”
|

Figure 8 — Using the chat history to provide context to the OpenAl APl call

The openAl_setup() function (Figure 9) is an integral part of the project, which primarily focuses on
setting up OpenAl embeddings. It is designed to automate the process of initializing and configuring
essential components required to use OpenAl's language models, specifically the Ada text embeddings.

The function begins by configuring the OpenAl API key, which is crucial for enabling the interaction with
OpenAl services. The APl key should be kept confidential to prevent unauthorized access. In this
function, the key is stored as an environment variable for security purposes.

Next, the function initiates the Ada text embeddings from OpenAl. These embeddings serve as the
foundation for language models, converting text into numerical representations that can be processed
by machine learning algorithms.

The function then proceeds to establish the FAISS document store. If the FAISS document store does
not already exist at the designated path, it processes all PDF documents at the specified document
store path and creates a new FAISS document store using the processed texts and the initialized Ada
embeddings. If the FAISS document store already exists, it loads the document store from the local
path.

With the FAISS document store in place, the function establishes a retriever for information retrieval
from the document store. It also sets up a conversation buffer memory that tracks the chat history.
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Then, the function sets up a ConversationalRetrievalChain from OpenAl's GPT-3.5-turbo model. This
retrieval chain uses the configured retriever, memory, and specific prompts to formulate responses to
user questions. These prompts include a condensation prompt to rephrase follow-up questions into
standalone questions and a QA prompt to answer user queries using the provided context.

Finally, the function returns a fallback _qga object. This object serves as a safety net for the dialogue
system, allowing it to answer queries even when there is no perfect match in the system's database.
This object uses the ConversationalRetrievalChain and can handle queries using the Langchain context
in OpenAl, thereby enhancing the versatility and robustness of the dialogue system.

Figure 9 — Setting up OpenAl embeddings

We have designed the prompt to utilize documents from the document store for pinpointing specific
answers, taking into account a few shot memory as well. The prompt engineering is such that it
produces answers within 3-4 sentences to ensure succinctness. Moreover, to avoid generating fictitious
or 'hallucinated' responses, we've explicitly instructed it not to fabricate any answers. Details are in
Figure 10.
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CONDENSE_PROMPT = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.

Chat History:
{chat_history)
Follow Up Input: {question]

Standalone questio

condense_prompt =

input_variables=["chat_history”, “question"], template=CONDENSE_PROMPT

= """You are a helpful AI assistant. Use the following pieces of context to answer the question at the end.
Make sure the answer is between 2-3 sentences.
If the question is not related to the context, just say Sorry for this question my AI has no answer.

If you don’t know the answer, just say Sorry for this question my AI has no answer . DO NOT try to make up an answer

{context}

User: {question}

System: "7"
qa_prompt = PromptTemplate(
input_variables=["context”, “question“],

template=QAa_PROM

PT_DOCUMENT_CHAT

)

fallback_ga = ConversationalRetrievalChain.from_1lm(

OpenAl(temperature=8, model_name="gpt-3,5-turbo-16k"

retriever=retriever,
memory=memory ,
condense_question_prompt=condense_prompt,

combine_docs_chain_kwargs={"prompt”: ga_prompt},

return fallback_ga

Figure 10 — OpenAl prompt engineering details

The provide_fallback dialogue() function, in Figure 11, is designed to generate a fallback dialogue for a
given query and chat history. This function serves a vital role in enhancing the dialogue system's
resilience, ensuring that it can provide a response even when an exact match for a user's query isn't
found within the existing dialogue history or document database.

This function supports two language models for generating fallback dialogues: OpenAl and BERT. The
model to be used is determined by the /Im parameter. The function starts by setting a default response
to be used if the model isn't properly initialized.

When OpenAl is specified as the language model, the function uses a globally defined OpenAl model
(Globals.fallback _qa) to generate the fallback dialogue. It passes the user's query and chat history as
parameters to this model and then extracts the answer from the generated result.

Alternatively, when BERT is selected as the language model, the function generates fallback dialogues
for each chunk of data available in Globals.chunks. It decodes each chunk, combines it with the chat
history, and feeds this combined text into the BERT model (Globals.model BERT) to generate a
response. Each response is then appended to a list of responses. The function ultimately combines all
the responses into one result.

Finally, the function returns the generated fallback dialogue. This ensures that the system is capable of
providing a response under all circumstances, enhancing the user experience.
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def provide_fallback_dialogue(query, chat_history, llm="openAI"):
# Default response if the model is not initialized properly
result = "fallback model is not initialized properly"

if 1lm == "openAI": # Using OpenAl for fallback dialogue
# Generate fallback dialogue using the global OpenAI model
result = Globals.fallback_ga({"question": query, "chat_history":
chat_history})
# Extract the answer from the generated result
result = result["answer"]

elif 1lm == "bert": # Using BERT for fallback dialogue
responses = []
for chunk in Globals.chunks:
# Decode the chunk
chunk_text = Globals. token_BERT.decode(chunk,
clean_up_tokenization_spaces=True)
# Combine the chunk text and the conversation
combined_text = "\n".join([f"{role}: {text}" for role, text in
chat_history] + [chunk_text])
# Use the question-answering pipeline
query = "Question: " + query
response = Globals.model BERT(question=query, context=combined_text
)
# Append the response to the list of responses
responses.append(response["answer"])

Figure 11 — Fallback function to handle unclear or unmatched queries

We should note that we are using the initialized fallback _ga for question answering for the document
store.

[def provide_dialogue_chatgpt(chat_history, user_input)

This function generates a response using OpenAl's ChatGPT model for a given user input and chat history

Parameters:
chat_history (str): The history of the chat conversation. It is a string where each turn in the
conversation
is separated by a newline.
user_input (str): The user's current input or question that needs a response.
Returns:
str: The generated response from the ChatGPT model.
Example:
chat_history = "User: Hello\nChatGPT: Hi! How can I assist you today?"
user_input = "Tell me about OpenAI."
response = provide_dialogue_chatgpt(chat_history, user_input)
print(response) # "OpenAl is an artificial intelligence research lab..."
openai.api_key = ""
# Construct the prompt with the chat history and user input
prompt = T"{chat_history}\nChatGPT:"
# Generate the response using the OpenAl API
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=200,
temperature=0.7,
n=1,
stop=None,
Timeour=10,
)
# Return the generated response, stripping any leading/trailing whitespace
return response.choices[&].:ext.strlp(ﬂ
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This function generates a dialogue response using OpenAl's ChatGPT model. It takes the chat history
and the user's input as parameters and returns the Al's response. It starts by setting the OpenAl API key
and then constructs a prompt using the chat history and the user's input.

The function calls the OpenAl API to generate a response using the constructed prompt and specific
parameters such as the engine (text-davinci-003), maximum token limit (200), temperature (0.7),
number of responses to generate (1), and the timeout period (10 seconds). Finally, it returns the
generated response after stripping any leading or trailing whitespace.

In addition to the Al capabilities, we have also incorporated other chatbots into our system - namely,
MSBot from Microsoft and Blenderbot from Facebook. The selection of these chatbots is contingent
upon the parameters passed, enabling us to tailor their usage according to specific requirements.

Here is the screenshot for the dialogue generation from other bots:

def provide_dialogue_mshot(tokenizer, model, msg, step, chat_history_encoded=None):

This function generates a response using Microsoft's MSBot model for a given user input and chat history.
Parameters

tokenizer: The tokenizer used for tokenizing the input message.

model: The pretrained MSBot model.

msg (str): The user's input message.

step (int): The current step of the conversation.

chat_history_encoded (torch.Tensor, optional): The encoded chat history.
Returns
chat_history_encoded (torch.Tensor): The encoded chat history including the current input message.

response (str): The generated response from MSBot.

# Ensure no gradient is computed

with torch.

e current message, adding the

current_msg_encoded = tokenizer.encode(msg

token at the

+ tokenizer.eos_token, return_tensors="pt")
# Append the new user input tokens to the chat history
bot_input_encoded = (torch.cat([chat_history_encoded, current_msg_encoded], dim=-1)
if step > 0
else current_msg_encoded)
bot_input_encoded = modify_history(bot_input_encoded)

e 2 ponse from the WSBotr model
chat_history_encoded model.generate(bot_input_encoded, max_length=1000, pad_token_id=tokenizer
.e0s5_token_id)

# Decode the response
response = tokenizer.decode(chat_history_encoded[:, bot_input_encoded.shape[-1]:]1[0], skip_special_tokens
=True)

return chat_history_encoded, response # Return the encoded chat history and the r~3p¢ﬁ$4

In this function, the user's input message is first tokenized and encoded. If there are previous messages
in the chat history, these are concatenated with the current message to form the full input for the
MSBot model. The modify_history() function is called to preprocess the encoded input. The model then
generates a response which is decoded and returned along with the updated encoded chat history. This
allows the chat history to be used in subsequent calls to this function, enabling multi-turn conversations
with MSBot.
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def provide_dialogue_blenderbot(tokenizer, model, msg, step=0, chat_history_encoded=None):
This function generates a response using Facebook's Blenderbot model for a given user input and chat
history.

Parameters:

tokenizer: The tokenizer used for tokenizing the input message.

model: The pretrained Blenderbot model.

msg (str): The user's input message.

step (int, optional): The current step of the conversation. Defaults to 0.
chat_history_encoded (torch.Tensor, optional): The encoded chat history. Defaults to None.

Returns:
chat_history_encoded (torch.Tensor): The encoded chat history including the current input message.
response (str): The generated response from Blenderbot.
# Ensure no gradient is computed, To save memory
with torch.no_grad():
# Encode the current message
current_msg_encoded = tokenizer([msg], return_tensors="pt")

# Generate a response from the Blenderbot model
chat_history_encoded = model.generate(**current_msg_encoded)

# Decode the response
response = tokenizer.batch_decode(chat_history_encoded, skip_special_tokens=True)

return chat_history_encoded, response[0] # Return the encoded chat history and the response

In this function, the input message from the user is tokenized and encoded. The Blenderbot model
generates a response from this input, which is then decoded to form a text string. This function then
returns the encoded chat history along with the decoded response from the model. The encoded chat
history can be used for subsequent turns in the conversation.

4.1 Japan-specific implementation

Compared to the EU system which has a restriction on generating dialogue responses sourced from the
document store, the Japanese system fully leverages the OpenAl GPT-3.5 capability to generate
responses. The difference is due to a less restrictive policy, which is allowed by the ethical approval of
the use of generative Al on the Japan side. Figure 12 shows the diagram of the OpenAl use in the
Japanese dialogue system.

Al mode

User requests to OpenAl
start (full generation)

User requests to end

Coaching/Stories mode Story exhausted

Message generation on
system docs

User utterance

Fallback

OpenAl
(full generation)

Figure 12 — Diagram of OpenAl use in the Japanese dialogue system
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For example, the following story, shown in Figure 13, uses OpenAl's Langchain context to generate
responses to user utterances representing specific intents in the cognitive, health, and nutrition
domains. Figure 14 shows the fallback to using OpenAl GPT-3.5 for the Al modality.

Figure 14 — Fallback function to generate dialog messages by using OpenAl GPT-3.5
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5 Conclusion

This document briefly described the tools used for the e-VITA Prototype 2, as they have evolved from
Prototype 1. The tools consist of state-of-the-art machine-learning tools for the management of verbal
interactions between the e-VITA coach and its users. The tools are highly configurable and extensible,
and they ensure that the user experience is as close to a “natural” dialogue interaction as the current
state of the art, and as well as safety considerations permit.
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