E=ViTA

EU-JAPAN VIRTUAL COACH FOR SMART AGEING

Grant Agreement: 101016453

D5.6 — Deep Learning Toolbox — Version 1

Deliverable D5.6

Authors and institution INFAI, AIRC

Date M15

Dissemination level

PU | Public, fully open, e.g., web

CO | Confidential, restricted under conditions set out in Model Grant Agreement Cco

Cl Classified, information as referred to in Commission Decision 2001/844/EC



D5.6 — Deep Learning Toolbox — Version 1

B Japin VIRTUAAL CEMEH FOR SMART AGENG

Document change history

Date Version Authors Description

10.02.2022 V0.1 Mohnish Dubey (INFAI) Table of Contents

07.04.2022 V0.2 Mohnish Dubey (INFAI) Introduction, specifications

75 04.2022 V0.3 Kristiina Jokinen (AIRC) Rasa

26.04.2022 V0.4 Kristiina Jokinen (AIRC) Edits

28.04.2022 V0.5 Mohnish Dubey (INFAI) Language Model tasks, References
29.04.2022 V0.6 Rainer Wieching (USI) Finalization




.@ =\\\WT| T,ﬁ\\\\ D5.6 — Deep Learning Toolbox — Version 1

EUL Japan VIRTUAL COACH FOR

Disclaimer

This document contains material, which is the copyright of certain e-VITA consortium parties and may
not be reproduced or copied without permission.

The information contained in this document is the proprietary CO information of the e-VITA consortium
and may not be disclosed except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the
proprietor of that information.

Neither the e-VITA consortium as a whole, nor a certain party of the e-VITA consortium warrant that
the information contained in this document is capable of use, or that use of the information is free from
risk and accept no liability for loss or damage suffered by any person using this information.

e-VITA — European-Japanese Virtual Coach for Smart Ageing
e-VITA (EU PROJECT NUMBER 101016453)

Work-package 5 — Trustworthy Al, Data Analytics & NLP
D5.6 Deep Learning toolbox — Version 1

Editors: Mohnish Dubey (INFAI) and Kristiina Jokinen (AIRC)
Work-package leader: AIRC, INFAI

Copyright notice
2021-2023 Participants in project e-VITA



@ =WV T/@\\\\ D5.6 — Deep Learning Toolbox — Version 1

Bl Jarn VIRTUAL COMCH FOR SMART AGE

Executive Summary

This document describes the deep learning techniques used in the dialogue components of the Evita
prototype. It briefly states the purpose of the methodology of deep learning and language models and
also presents a short overview of the technology used in the subtasks of the NLP pipeline. Since the
project adopted to use the Rasa Open-Source Conversational Al system, much of the toolbox is already
provided within the platform itself.
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Acronyms and Abbreviations

Acronym/Abbreviation Explanation
Conversational Al Interactive system using Al techniques
Knowledge graph Representation of knowledge in graph format with nodes and

connecting arcs

Rasa Open-source Conversational Al Framework

Knowledge base Structured knowledge that encodes information necessary for the
system’s interaction operation

KG, Knowledge graph Particular type of data representation consisting of nodes and
connecting edges.
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1 Introduction

The Deep Learning Toolbox is to provide a set of tools and techniques that can be used in the
annotation, segmentation, analysis, and processing of language data. In e-VITA project, the tools are
related to the Rasa Open-Source Conversational Al platform which offers a wide variety of state-of-the-
art tools to experiment with different pipelines and parameters. This deliverable gives as short overview
of the available tools.

2 Language Model as NLP toolbox

2.1 Language model

The use of various statistical and probabilistic technigues to predict the probability of a given sequence
of words appearing in a phrase is known as language modeling (LM)[1]. To establish a foundation for
their word predictions, language models evaluate large amounts of text data. They're employed in
natural language processing (NLP) applications, especially those that output text. Machine translation
and question answering are two examples of these applications.

Language models analyze text data to calculate word probability. They use an algorithm to interpret
the data, which establishes rules for context in natural language. The model then uses these principles
to accurately predict or construct new sentences in language problems. The model basically learns the
basic properties and qualities of language and then applies them to new phrases.

There are numerous probabilistic ways to modeling language, which vary based on the language
model's aim. Technically, the different varieties differ in terms of the amount of text data they examine
and the math they utilize to do so.

2.2 T5 Language Model

T5, or Text-to-Text Transfer Transformer [3], is a Transformer[2] based architecture that uses a text-to-
text approach. Every task — including translation, question answering, and classification — is cast as
feeding the model text as input and training it to generate some target text. This allows for the use of
the same model, loss function, hyperparameters, etc. across our diverse set of tasks.

["translate English to German: That is good."

"Das ist gut."

"cola sentence: The
course is jumping well."

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

"six people hospitalized after
a storm in attala county."

Figure 1 Example showcasing T5 Language Model



I@! =\\\Wﬁ T,ﬁ\\\\ D5.6 — Deep Learning Toolbox — Version 1

EUL Japan VIRTUAL COACH FOR SMART AGH

2.3 NLP Tasks and Multitasking
2.3.1 Named Entity Recognition

The term "named entity" refers to a group of elements crucial to comprehending text. Parts of speech
are the source of some familiar entities (like nouns, verbs, adjectives, etc.). Nouns, in particular, are
critical to comprehend the finer points of a phrase. Humans pay greater attention to nouns than other
parts of speech when dealing with named entity recognition (NER) [4].

For example, we have a sentence “John needs to visit Dr Anderson for his diabetes check-up.”, an NER
machine learning (ML) model might detect the word “John” and “Dr Anderson” in a text and classify it
as a “Person”. One can follow the same example at spacy.io [5]

Editable Code

L spacy

nlp spacy.load("en_core_web_sm")

doc nlp("John needs to visit Dr Anderson for his diabetes check-up.")

or ent in doc.ents:
int(ent.text, ent.start_char, ent.end_char, ent.label_)

John @ 4 PERSON
Anderson 23 31 PERSON

Figure 2 NER example with Spacy code snippet

2.3.2 Entity Linking

Named Entity Recognition is the function of assigning a unique identity-class (such as a person,
location, things or events) to the entities mentioned in the text. Entity Linking is the process to spot a
mentioned entity in the text (question in our use-case) and connect it to the entity representing the
span-entity in the knowledge graph. With Entity Linking, we are able to use a large amount of
information on the real-world individuals and their relationships in the publicly available knowledge
graphs, such as Wikipedia, DBpedia or Wikidata. Entity Linking connects text (unstructured) data to a
structured database, providing a base to use the knowledge stored in structured data. This gives more
semantic information to understand the texts better.

For example, in the sentence "Manhattan is the birthplace for Robert Downey Jr", by Entity Linking we
can link "Robert Downey Jr'" to https://www.wikidata.org/wiki/Q165219 and "Manhattan" to
https://www.wikidata.org/wiki/Q11299. These linkings shows that the sentence is regarding movie
actor.

Entity Linking [6] is generally a three-step procedure involving Entity Span(Mention) Detection,
Candidate Generation and Candidate Disambiguation. The first task is to spot the span of the entity in
the sentence which is also called named entity recognition. Once the span of the entity is detected,



.@ :\\\Wm T//?\\\\ D5.6 — Deep Learning Toolbox — Version 1

EUL Japan VIRTUAL COACH FOR SMART AGE

the EL system applies string similarity to generate a set of Entity Candidates for the span. The final
task is to re-rank the candidate list such that the correct candidate is the top of the list.

2.3.3 Relation Linking

A knowledge graph has facts stored in terms of a triple format that is <Subject, Predicate, Object> (<S,
P, 0O>). The process of annotating given natural language text with KG predicate is termed Relation
Linking. The generic approach to Relation Linking [7] is often similar to Entity Linking. First, find the key
phrase in the sentence; second, generate a candidate list based on the previous step; third, re-rank the
list to get the correct annotation.

In many cases, this approach is not ideal as text spans might not be sufficient for correct candidate
space, as the expressivity of a predicate could vary more than that of a named entity.

For better understanding, let's look few examples:

Consider we have triple about diabetes and its precaution as:
< subject = “diabetes”, predicate = “precautions”, object = “Exercise regularly”>

Example 1:
text: What are the precautions for diabetes?

relation span: "precautions".
correct predicate: "precautions”

Example 2:
text: How to safeguard me from diabetes?

relation span: "safeguard".
correct predicate: "precautions"

Example 3:
text: What things should | follow not to have diabetes?

relation span: unclear
correct predicate: "precautions"

2.4 Single Model Multitasking

We have developed a single model to perform the above-mentioned tasks and other NLP tasks. We
retrained the pretrained T5 language model which has the capability of perform multitasking from
single model.

We used Huggingface and SimpleTransformer library for the retaining. We used several exiting datasets
KGQA and dialogue dataset as mentioned in Dubey et al [7].

3 RASA as a Toolbox for Dialogue System

Rasa Open-source Conversational Al platform is a versatile platform which supports various NLP tools
and also allows the user to use their own tailor-made tools as necessary [8]. The Rasa platform organises
the tools roughly into two groups: those for natural language processing and those for dialogue
management. The former set is realised in the so called NLU pipeline, while the latter one uses machine-
learning techniques, notably transformers to implement state tracking and dialogue action decisions.
In this deliverable, we follow closely the description in Intents & Entities: Understanding the Rasa NLU
Pipeline | The Rasa Blog | Rasa
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The NLU pipeline in Rasa looks as in Figure 3 (from the above-mentioned blog). It consists of four basic
components which are: 1) Tokenizers, 2) Featurizers, 3) Intent Classifiers, and 4) Entity Extractors.

/. Entity Extractor —— Entities

Text —— Tokens —— Features

\ Intent Classifier —— Intents
Figure 3 NLU pipeline for RASA

3.1 Tokenizers

Tokenizers take the text input and segment it into suitable chunks. In natural dialogue processing the
suitable chunks are usually words, and the output is a list of words. The Tokenizer also provides separate tokens
for punctuation marks. The default tokenizer for English is the WhiteSpaceTokenizer but for languages other than
English it is possible to use other ones.

3.2 Featurizers

Featurizers generate numeric features for the machine learning models. Two different types of feature
sets can be used: sparce feature vectors, which represent the words as one token among the other
zero-valued vector slotss, and dense features, which contain many pretrained embeddings. Rasa uses
CountVectorizer to generate sparse features, and it also uses LexicalSyntacticFeaturizer that generates
window-based features useful for entity recognition. In order to include part of speech features, the
LexicalSyntacticFeatureizer can be combined with spaCy (spaCy - Industrial-strength Natural Language
Processing in Python), a comprehensive state-of-the-art NLP library and NLP pipeline system for
language processing in python.

Dense Features are commonly generated from SpaCyFeaturizers. Also, the machine learning libraries
from Huggingface via LanguageModelFeaturizers can be used. More details of the dense features can
be obtained from the Rasa documentation.

3.3 Intent Classifiers

The important part of dialogue modelling is to correctly classify the user’s intent. For intent
classification, Rasa uses its own DIET model (Dual Intent and Entity Transformer) which handles both
intent classification and entity extraction. For the description of how DIET works, we refer to the
relevant papers and Rasa documentation Intents & Entities: Understanding the Rasa NLU Pipeline | The
Rasa Blog | Rasa

3.4 Entity Extractors

The DIET model learns how to extract entities simultaneously with the intent recognition, this is not
optimal and not recommended for every type of entity. For instance, structured patterns such as phone
numbers, can be extracted directly using RegexEntityExtractor and Named Entities with SpaCy language
models: ner spacy. Usually there are more than one type of entity extractor in the Rasa pipeline.
Entities can also be mapped to synonymes.

10
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3.5 NLU Pipeline

The NLU pipeline defines the tools used in the Rasa language processing. The pipeline is configured in
the ‘config.yml’ file. There is a default pipeline that is used unless the user defines specific modules to
be used in the dialogue model.

The pipeline used in the Protoypel is given below:

pipeline
name
name
name
name
name
analyzer
min_ngram
max_ngram
name
epochs
constrain_similarities: true
name
name
epochs
constrain_similarities: true
name
threshold
ambiguity threshold

For the dialogue policy, i.e., determining how the system will respond once it has recognized a particular
user intent, Rasa uses different types of policies, combining machine-learning policies and rule-based
policies.

The trademark of Rasa is the TED (Transformer Embedded Dialogue) policy. This consists of several
transformer encoders which are shared for both next-action prediction and entity recognition. See
more in the paper Vlasov, Mosig, Nichol (2019) Dialogue Transformers [1910.00486] Dialogue
Transformers (arxiv.org)

The UnexpecTEDIntentPolicy is an auxiliary policy that shares the same model architecture as
TEDPolicy. It allows the system to react to unlikely user turns, see more in Rasa documentation.

The Memoization Policy is based on stories (dialogue scripts) which are saved in the stories.yml -file. If
the curent conversation matches with one of the stories defined, the next action is predicted based on
the story with confidence 1.0, otherwise “none” is predicted with confidence 0.0.

The Rule policy takes care of the conversation which are fixed, such as greetings, which always follow
the same pattern. It makes predictions based on any rules in the training data. However, Rule Policy
should be used with care as it fixes the dialogue logic and many rules can easily interfere with each
other. Moreover, the main point of conversational Al is to use machine-learning techniques.

11
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The following snippet shows a prototypel policies that determine the next action.

policies
name: MemoizationPolicy
name: RulePolicy
name: UnexpecTEDIntentPolicy
max_history
epochs
name: TEDPolicy
max_history
epochs
constrain_similarities: true

4 Question Answering over Wikipedia

4.1 Overview

“Haystack is an open-source framework for building search systems that work intelligently over large
document collections. Recent advances in NLP have enabled the application of question answering,
retrieval and summarization to real world settings and Haystack is designed to be the bridge between
research and industry.”

The main components and core concepts of a general Haystack [9] setup can be depicted as follows:

Figure 4 Haystack architecture reference

To build a QA system on Wikipedia we mainly follow this structure and make use of different
components provided by the Haystack framework. We're deploying an extractive QA system, i.e. given
a corpus of articles and a question in natural language, the goal is to return a text phrase in a particular
passage contained in one or more articles.

12
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4.2 Data

Wikipedia dumps are usually provided in the form of wikitext source and metadata embedded in XML.
While indeed possible to work on this directly while indexing the corpus for Haystack, we decided to
convert it to a simpler JSON format in advance by using the 3rd party project Wikiextractor. Most
importantly, this tool allows us to strip the Wikipedia Markdown and provide a light-weight JSON format
with just title and plain text of each article.

4.3 Indexing

Given the converted Wikipedia corpus, we have to first (pre-)process each Wikipedia article. This does
not only comprise some more cleansing and normalization tasks like removal of white spaces, but also
splitting each article into smaller pieces to optimize retrieval. Following the suggestions in the Haystack
guide, we decided to split by words respecting sentence boundaries and used a split length of max. 100
words. Clearly, this leads to multiple documents for the same article, but makes indexing as well as
retrieval more efficient.

The next step of the indexing phase is two-fold: first we’re computing the embeddings for each text
using one of the provided language models of Haystack and then we’re putting the data into some
document store. We choose the vector database Milvus for storing the embeddings and use SQLite to
store the corresponding documents.

Search

For setting up the search we make use of a so-called pipeline. In our case, we decided to use an
extractive QA mechanism which comprises the task of searching through a large collection of
documents for a span of text that answers a question. The ExtractiveQAPipeline combines the Retriever
and the Reader such that:

e The Retriever combs through a database and returns only the documents that it deems to be
the most relevant to the query.

e The Reader accepts the documents returned by the Retriever and selects a text span as the
answer to the query.

The output of the pipeline is a Python dictionary with a list of Answer objects stored under the answers
key. These provide additional information such as the context from which the answer was extracted
and the model’s confidence in the accuracy of the extracted answer.

4.4 Deployment Components Summary

We use the following components and language models:
Haystack framework:
e v1.1.0
Language Models:
e facebook/dpr-question_encoder-single-ng-base
e facebook/dpr-ctx_encoder-single-ng-base
e deepset/roberta-base-squad?2

Document store:

13



.@. =\\\Wﬁ T/}\\\\ D5.6 — Deep Learning Toolbox — Version 1

EULJAman VIRTUAL COACH FOR SMART AGH

e Milvus v1.1.1 for storage and retrieval of the passage embedding vectors
e SQLite for storage of the passages
PreProcessor:
e clean_empty lines=True,
e clean_whitespace=True,
e clean_header_footer=True,
e split_by="word",
e split_length=100,

e split_respect_sentence_boundary=True,

split_overlap=0,

Retriever:
e DensePassageRetriever
0 query_embedding_model="facebook/dpr-question_encoder-single-ng-base"

0 passage_embedding_model="facebook/dpr-ctx_encoder-single-ng-base"

Reader:
e FARMReader
o model="deepset/roberta-base-squad2"

O use_gpu=True

5 Conclusion and Qutlook

This document briefly described the tools used for the e-VITA prototype 1. The tools consist of state-
of-the-art machine-learning tools for the annotation, segmentation, analysis, and processing of
language data, as well as to determine the next action in the dialogue context. There will be an update
of this deliverable in M27 after the re-design phase.

14
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